
Calibration 2 - Superposition & Entanglement
Congratulations, the first part of calibration has now been completed!

Let's move on to measurement and entanglement, the cornerstone phenomena of quantum
computing, and the second part required before we can use our Quantum Kraken Device!

Measurement and State Collapse

This is where statevectors will make more sense! Measurement is the process of observing a
qubit’s state, collapsing it into either |0⟩ or |1⟩ based on its probability distribution. The
coefficients we saw in the first calibration step, or the statevector, determines these
probabilities:

P(|0⟩) = |α|²
P(|1⟩) = |β|²

For example:

Measurement outcomes are random when the qubit is in a superposition state - measuring |+⟩
yields |0⟩ or |1⟩ with equal probability.

Remember how when a qubit is in the |+⟩ state, both coefficients α and β are the same value of
1/√2? Well if we use the same probability distribution from above:

P(|0⟩) = |1/√2|² = 1/2 = 50%
P(|1⟩) = |1/√2|² = 1/2 = 50%

We can measure a qubit at any point on the Bloch sphere's surface. The result we get will be a
probability distribution based on that location.

Basis Measurement

When measuring a qubit, you’re free to choose the basis in which to observe it—most
commonly, the Z (computational) basis or the X basis.

Initialize a qubit in |0⟩.
Apply an X gate to flip it to |1⟩.
Measure the qubit to observe |1⟩ with 100% certainty.



In the Z basis, the outcomes ∣0⟩ or ∣1⟩ reflect the “classical bit” perspective, matching how
quantum computers typically store data. By contrast, measuring in the X basis (i.e., ∣+⟩ or ∣–⟩)
probes a different aspect of the qubit’s superposition. If measuring in the X basis, you are
evaluating:

P(|+⟩) = |α|²
P(|-⟩) = |β|²

Where: |ψ⟩ = α|+⟩ + β|-⟩

So now you can star to see how much information a "quantum bit" (qubit) can represent!

The measurement of the Quantum Kraken Device is always in the Computational Z basis (0 or
1), however knowledge of this conceptual measurement across an axis of the qubit is required
as we move on past the calibration state, so keep it in mind!

Quantum State Collapse

The last point to highlight about quantum measurement, is that when measuring a qubit, it
collapses the state into a defined basis state. Once collapsed, the quantum properties of the
qubit go away. You need to reinitialize the qubit start over. Let's see how that works with
multiple qubits as well.

Quantum Circuit Description

We've seen how a qubit can be represented and how gates operate on the qubit itself, but how
do we show multiple qubits operating together? This can be done in a way that's similar to
classical circuits! Reading left-to-right, where the initial qubit state is mentioned on the left of
each "qubit line", and sequential gate operations are added in order that they are executed.
When multi-qubit gates are applied, you can see the gate crossing between qubit lines, such as
below.



These particular lines (highlighted read) represents the CNOT gate, so let's see what that does.

Entanglement and the CNOT Gate

Entanglement links the states of two or more qubits such that the state of one qubit directly
affects the others, no matter the distance between them. The CNOT (Controlled-NOT) gate is a
fundamental operation to create entanglement.

A CNOT gate works by using the first qubit as a control (represented as a black dot in the
circuit) and the second qubit as the target (represented as the circled cross in the diagram).
When the first qubit is evaluated as |1⟩ the gate performs a NOT on the second qubit.
Otherwise when the first control qubit is |0⟩ the target qubit is left unchanged.

The resulting state is called an entangled Bell state:

|ψ⟩ = (|00⟩ + |11⟩) / √2

If either qubit is measured, the other collapses into the same state, maintaining their correlation.
So even if you measure just one, if you measure a 0, the other qubit has collapsed to a 0, even
without having measured it directly.

Start with two qubits,. both in |0⟩.
Apply an H gate to the first qubit to create superposition.
Use a CNOT gate with the first qubit as control and the second as target.



Concept: Turning CNOT into CZ

A Controlled-Z gate applies a Z gate (phase flip) to the target qubit only if the control qubit is
∣1⟩.

1. CNOT vs. CZ



Using these transformations, we can convert a CNOT into a CZ with a few extra steps. To
apply CZ gate (control, target) using H gate, CNOT gate, H gate on the target qubit. Because
the Hadamard gate transforms Z into X and vice versa on a single qubit, sandwiching a CNOT
gate with two H gates on the target effectively changes the “bit-flip if control=1” action into a
“phase-flip if control=1.”

Calibration Challenge 2

CNOT flips ∣x⟩ on the target qubit if the control is ∣1⟩.
CZ flips the phase (Z) on the target qubit if the control is ∣1⟩.

Calibration 2a: Using two qubits, create the positive Bell Pair below. Once done print out
the statevector hash and submit to compare the calibration.

Calibration 2b: Using three qubits, create the GHZ (Greenberger–Horne–Zeilinger) state
below. Once done print out the statevector hash and submit to compare the calibration.

Calibration 2c: Using three qubits, create a Cluster State that has the below statevector,
where every qubit is entangled. Once done print out the statevector hash and submit to
compare the calibration.


